
pymediainfo Documentation
Release 6.0.0

Patrick Altman, Louis Sautier

Nov 25, 2022

Contents

1 pymediainfo package 1

2 Requirements 5

3 Using MediaInfo 7

4 Reporting Issues / Bugs 11

5 Indices and tables 13

Python Module Index 15

Index 17

i

ii

CHAPTER 1

pymediainfo package

1.1 Module contents

This module is a wrapper around the MediaInfo library.

class pymediainfo.MediaInfo(xml: str, encoding_errors: str = ’strict’)
An object containing information about a media file.

MediaInfo objects can be created by directly calling code from libmediainfo (in this case, the library must be
present on the system):

>>> pymediainfo.MediaInfo.parse("/path/to/file.mp4")

Alternatively, objects may be created from MediaInfo’s XML output. Such output can be obtained using the
XML output format on versions older than v17.10 and the OLDXML format on newer versions.

Using such an XML file, we can create a MediaInfo object:

>>> with open("output.xml") as f:
... mi = pymediainfo.MediaInfo(f.read())

Parameters

• xml (str) – XML output obtained from MediaInfo.

• encoding_errors (str) – option to pass to str.encode()’s errors parameter be-
fore parsing xml.

Raises xml.etree.ElementTree.ParseError – if passed invalid XML.

Variables tracks – A list of Track objects which the media file contains. For instance:

>>> mi = pymediainfo.MediaInfo.parse("/path/to/file.mp4")
>>> for t in mi.tracks:
... print(t)

(continues on next page)

1

pymediainfo Documentation, Release 6.0.0

(continued from previous page)

<Track track_id='None', track_type='General'>
<Track track_id='1', track_type='Text'>

audio_tracks

Returns All Tracks of type Audio.

Return type list of Tracks

classmethod can_parse(library_file: Optional[str] = None)→ bool
Checks whether media files can be analyzed using libmediainfo.

Parameters library_file (str) – path to the libmediainfo library, this should only be used
if the library cannot be auto-detected.

Return type bool

general_tracks

Returns All Tracks of type General.

Return type list of Tracks

image_tracks

Returns All Tracks of type Image.

Return type list of Tracks

menu_tracks

Returns All Tracks of type Menu.

Return type list of Tracks

other_tracks

Returns All Tracks of type Other.

Return type list of Tracks

classmethod parse(filename: Any, library_file: Optional[str] = None, cover_data: bool =
False, encoding_errors: str = ’strict’, parse_speed: float = 0.5, full: bool
= True, legacy_stream_display: bool = False, mediainfo_options: Op-
tional[Dict[str, str]] = None, output: Optional[str] = None) → Union[str,
pymediainfo.MediaInfo]

Analyze a media file using libmediainfo.

Note: Because of the way the underlying library works, this method should not be called simultaneously
from multiple threads with different arguments. Doing so will cause inconsistencies or failures by changing
library options that are shared across threads.

Parameters

• filename (str or pathlib.Path or os.PathLike or file-like
object.) – path to the media file or file-like object which will be analyzed. A URL can
also be used if libmediainfo was compiled with CURL support.

• library_file (str) – path to the libmediainfo library, this should only be used if the
library cannot be auto-detected.

2 Chapter 1. pymediainfo package

pymediainfo Documentation, Release 6.0.0

• cover_data (bool) – whether to retrieve cover data as base64.

• encoding_errors (str) – option to pass to str.encode()’s errors parameter be-
fore parsing MediaInfo’s XML output.

• parse_speed (float) – passed to the library as ParseSpeed, this option takes values
between 0 and 1. A higher value will yield more precise results in some cases but will also
increase parsing time.

• full (bool) – display additional tags, including computer-readable values for sizes and
durations.

• legacy_stream_display (bool) – display additional information about streams.

• mediainfo_options (dict) – additional options that will be passed to the Medi-
aInfo_Option function, for example: {"Language": "raw"}. Do not use this pa-
rameter when running the method simultaneously from multiple threads, it will trigger a
reset of all options which will cause inconsistencies or failures.

• output (str) – custom output format for MediaInfo, corresponds to the CLI’s
--Output parameter. Setting this causes the method to return a str instead of a
MediaInfo object.

Useful values include:

– the empty str "" (corresponds to the default text output, obtained when running
mediainfo with no additional parameters)

– "XML"

– "JSON"

– %-delimited templates (see mediainfo --Info-Parameters)

Return type str if output is set.

Return type MediaInfo otherwise.

Raises

• FileNotFoundError – if passed a non-existent file.

• ValueError – if passed a file-like object opened in text mode.

• OSError – if the library file could not be loaded.

• RuntimeError – if parsing fails, this should not happen unless libmediainfo itself
fails.

Examples:

>>> pymediainfo.MediaInfo.parse("tests/data/sample.mkv")
<pymediainfo.MediaInfo object at 0x7fa83a3db240>

>>> import json
>>> mi = pymediainfo.MediaInfo.parse("tests/data/sample.mkv",
... output="JSON")
>>> json.loads(mi)["media"]["track"][0]

{'@type': 'General', 'TextCount': '1', 'FileExtension': 'mkv',
'FileSize': '5904', ... }

text_tracks

1.1. Module contents 3

pymediainfo Documentation, Release 6.0.0

Returns All Tracks of type Text.

Return type list of Tracks

to_data()→ Dict[str, Any]
Returns a dict representation of the object’s Tracks.

Return type dict

to_json()→ str
Returns a JSON representation of the object’s Tracks.

Return type str

video_tracks

Returns All Tracks of type Video.

Return type list of Tracks

class pymediainfo.Track(xml_dom_fragment: xml.etree.ElementTree.Element)
An object associated with a media file track.

Each Track attribute corresponds to attributes parsed from MediaInfo’s output. All attributes are lower case.
Attributes that are present several times such as Duration yield a second attribute starting with other_ which is
a list of all alternative attribute values.

When a non-existing attribute is accessed, None is returned.

Example:

>>> t = mi.tracks[0]
>>> t
<Track track_id='None', track_type='General'>
>>> t.duration
3000
>>> t.other_duration
['3 s 0 ms', '3 s 0 ms', '3 s 0 ms',

'00:00:03.000', '00:00:03.000']
>>> type(t.non_existing)
NoneType

All available attributes can be obtained by calling to_data().

to_data()→ Dict[str, Any]
Returns a dict representation of the track attributes.

Example:

>>> sorted(track.to_data().keys())[:3]
['codec', 'codec_extensions_usually_used', 'codec_url']
>>> t.to_data()["file_size"]
5988

Return type dict

4 Chapter 1. pymediainfo package

CHAPTER 2

Requirements

This is a simple wrapper around the MediaInfo library, which you can find at https://mediaarea.net/en/MediaInfo.

Note:

• Without the library, this package cannot parse media files, which severely limits its functionality.

• Binary wheels containing a bundled library version are provided for Windows and Mac OS X.

• Packages are available for several major Linux distributions. They depend on the library most of the time and
are the preferred way to use pymediainfo on Linux unless a specific version of the package is required.

5

https://mediaarea.net/en/MediaInfo
https://repology.org/metapackage/python:pymediainfo

pymediainfo Documentation, Release 6.0.0

6 Chapter 2. Requirements

CHAPTER 3

Using MediaInfo

There isn’t much to this library so instead of a lot of documentation it is probably best to just demonstrate how it
works:

3.1 Getting information from an image

from pymediainfo import MediaInfo

media_info = MediaInfo.parse("/home/user/image.jpg")
Tracks can be accessed via the 'tracks' attribute or through shortcuts
such as 'image_tracks', 'audio_tracks', 'video_tracks', etc.
general_track = media_info.general_tracks[0]
image_track = media_info.image_tracks[0]
print(

f"{image_track.format} of {image_track.width}×{image_track.height} pixels"
f" and {general_track.file_size} bytes."

)

Will return something like:

JPEG of 828×828 pixels and 19098 bytes.

3.2 Getting information from a video

from pprint import pprint
from pymediainfo import MediaInfo

media_info = MediaInfo.parse("my_video_file.mp4")
for track in media_info.tracks:

if track.track_type == "Video":

(continues on next page)

7

pymediainfo Documentation, Release 6.0.0

(continued from previous page)

print("Bit rate: {t.bit_rate}, Frame rate: {t.frame_rate}, "
"Format: {t.format}".format(t=track)

)
print("Duration (raw value):", track.duration)
print("Duration (other values:")
pprint(track.other_duration)

elif track.track_type == "Audio":
print("Track data:")
pprint(track.to_data())

Will return something like:

Bit rate: 3117597, Frame rate: 23.976, Format: AVC
Duration (raw value): 958
Duration (other values):
['958 ms',
'958 ms',
'958 ms',
'00:00:00.958',
'00:00:00;23',
'00:00:00.958 (00:00:00;23)']

Track data:
{'bit_rate': 236392,
'bit_rate_mode': 'VBR',
'channel_layout': 'L R',
'channel_positions': 'Front: L R',
'channel_s': 2,
'codec_id': 'mp4a-40-2',
'commercial_name': 'AAC',
'compression_mode': 'Lossy',
...

}

3.3 Dumping objects

In order to make debugging easier, pymediainfo.MediaInfo and pymediainfo.Track objects can be con-
verted to dict using pymediainfo.MediaInfo.to_data() and pymediainfo.Track.to_data() re-
spectively. The previous example demonstrates that.

3.4 Parsing existing MediaInfo output

If you already have the XML data in a string in memory (e.g. you have previously parsed the file or were sent the
dump from mediainfo --output=OLDXML by someone else), you can call the constructor directly:

from pymediainfo import MediaInfo
media_info = MediaInfo(raw_xml_string)

8 Chapter 3. Using MediaInfo

pymediainfo Documentation, Release 6.0.0

3.5 Accessing Track attributes

Since the attributes on the pymediainfo.Track objects are being dynamically added as the XML output from
MediaInfo is being parsed, there isn’t a firm definition of what will be available at runtime. In order to make consuming
the objects easier so that you can avoid having to use hasattr or try/except blocks, the __getattribute__ method has
been overriden and will just return None when and if an attribute is referenced but doesn’t exist.

This will enable you to write consuming code like:

from pymediainfo import MediaInfo
media_info = MediaInfo.parse("my_video_file.mp4")
for track in media_info.tracks:

if track.bit_rate is None:
print("""{} tracks do not have bit rate

associated with them.""".format(track.track_type))
else:

print("{}: {}".format(track.track_type, track.bit_rate))

Output:

General tracks do not have bit rate associated with them.
Video: 46033920
Audio: 1536000
Menu tracks do not have bit rate associated with them.

3.5. Accessing Track attributes 9

pymediainfo Documentation, Release 6.0.0

10 Chapter 3. Using MediaInfo

CHAPTER 4

Reporting Issues / Bugs

Please use the issue tracker in GitHub at https://github.com/sbraz/pymediainfo/issues to report all feature requests or
bug reports. Thanks!

11

https://github.com/sbraz/pymediainfo/issues

pymediainfo Documentation, Release 6.0.0

12 Chapter 4. Reporting Issues / Bugs

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13

pymediainfo Documentation, Release 6.0.0

14 Chapter 5. Indices and tables

Python Module Index

p
pymediainfo, 1

15

pymediainfo Documentation, Release 6.0.0

16 Python Module Index

Index

A
audio_tracks (pymediainfo.MediaInfo attribute), 2

C
can_parse() (pymediainfo.MediaInfo class method),

2

G
general_tracks (pymediainfo.MediaInfo attribute),

2

I
image_tracks (pymediainfo.MediaInfo attribute), 2

M
MediaInfo (class in pymediainfo), 1
menu_tracks (pymediainfo.MediaInfo attribute), 2

O
other_tracks (pymediainfo.MediaInfo attribute), 2

P
parse() (pymediainfo.MediaInfo class method), 2
pymediainfo (module), 1

T
text_tracks (pymediainfo.MediaInfo attribute), 3
to_data() (pymediainfo.MediaInfo method), 4
to_data() (pymediainfo.Track method), 4
to_json() (pymediainfo.MediaInfo method), 4
Track (class in pymediainfo), 4

V
video_tracks (pymediainfo.MediaInfo attribute), 4

17

	pymediainfo package
	Requirements
	Using MediaInfo
	Reporting Issues / Bugs
	Indices and tables
	Python Module Index
	Index

